خارجي$1$ - traduction vers Anglais
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

خارجي$1$ - traduction vers Anglais

DIVERGENT SERIES
1+1+1+···; 1 + 1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + · · ·; 1 + 1 + 1 + 1 + …; 1 + 1 + 1 + 1 + ...; Zeta(0)
  • alt=A graph showing a line that dips just below the ''y''-axis

خارجي      
ecto
خارجي         
  • کرمان]]. وقد عرف الأزارقة بتكفير أصحاب الكبائر لانهم لم يحكموا علي أنفسهم بما أنزل الله.
  • اُغتيل علي بن أبي طالب]] على يد أحد الخوارج يُدعى [[عبد الرحمن بن ملجم]] في 21 رمضان 40 هـ/ 27 يناير 661 م في [[مسجد الكوفة]].
  • ذو الخويصرة التميمي]] وعبد الله بن شجرة وجيش [[الخلافة الراشدة]] بقيادة [[علي بن أبي طالب]] و[[الحسن بن علي]] و[[الأشعث بن قيس]].
أقدم الفرق الإسلامية التي رفضت مزاعم علي ومعاوية للخلافة
الخوارج; خارجي; ظهور الخوارج; Khawarij; الخوراج; لا حكم إلا لله; الخوارجيون
external, extern, exterior, outer, outward, outermost, extraneous, extrinsic, incident, peripheral, foreign
خارجي         
  • کرمان]]. وقد عرف الأزارقة بتكفير أصحاب الكبائر لانهم لم يحكموا علي أنفسهم بما أنزل الله.
  • اُغتيل علي بن أبي طالب]] على يد أحد الخوارج يُدعى [[عبد الرحمن بن ملجم]] في 21 رمضان 40 هـ/ 27 يناير 661 م في [[مسجد الكوفة]].
  • ذو الخويصرة التميمي]] وعبد الله بن شجرة وجيش [[الخلافة الراشدة]] بقيادة [[علي بن أبي طالب]] و[[الحسن بن علي]] و[[الأشعث بن قيس]].
أقدم الفرق الإسلامية التي رفضت مزاعم علي ومعاوية للخلافة
الخوارج; خارجي; ظهور الخوارج; Khawarij; الخوراج; لا حكم إلا لله; الخوارجيون

computer remote

Définition

one
the upper limit of intoxication or exhaustion
after the second pint of gin, i was hard one-ing

Wikipédia

1 + 1 + 1 + 1 + ⋯

In mathematics, 1 + 1 + 1 + 1 + ⋯, also written n = 1 n 0 {\displaystyle \sum _{n=1}^{\infty }n^{0}} , n = 1 1 n {\displaystyle \sum _{n=1}^{\infty }1^{n}} , or simply n = 1 1 {\displaystyle \sum _{n=1}^{\infty }1} , is a divergent series, meaning that its sequence of partial sums does not converge to a limit in the real numbers. The sequence 1n can be thought of as a geometric series with the common ratio 1. Unlike other geometric series with rational ratio (except −1), it converges in neither the real numbers nor in the p-adic numbers for some p. In the context of the extended real number line

n = 1 1 = + , {\displaystyle \sum _{n=1}^{\infty }1=+\infty \,,}

since its sequence of partial sums increases monotonically without bound.

Where the sum of n0 occurs in physical applications, it may sometimes be interpreted by zeta function regularization, as the value at s = 0 of the Riemann zeta function:

ζ ( s ) = n = 1 1 n s = 1 1 2 1 s n = 1 ( 1 ) n + 1 n s . {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}={\frac {1}{1-2^{1-s}}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{s}}}\,.}

The two formulas given above are not valid at zero however, but the analytic continuation is.

ζ ( s ) = 2 s π s 1   sin ( π s 2 )   Γ ( 1 s )   ζ ( 1 s ) , {\displaystyle \zeta (s)=2^{s}\pi ^{s-1}\ \sin \left({\frac {\pi s}{2}}\right)\ \Gamma (1-s)\ \zeta (1-s)\!,}

Using this one gets (given that Γ(1) = 1),

ζ ( 0 ) = 1 π lim s 0   sin ( π s 2 )   ζ ( 1 s ) = 1 π lim s 0   ( π s 2 π 3 s 3 48 + . . . )   ( 1 s + . . . ) = 1 2 {\displaystyle \zeta (0)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \sin \left({\frac {\pi s}{2}}\right)\ \zeta (1-s)={\frac {1}{\pi }}\lim _{s\rightarrow 0}\ \left({\frac {\pi s}{2}}-{\frac {\pi ^{3}s^{3}}{48}}+...\right)\ \left(-{\frac {1}{s}}+...\right)=-{\frac {1}{2}}}

where the power series expansion for ζ(s) about s = 1 follows because ζ(s) has a simple pole of residue one there. In this sense 1 + 1 + 1 + 1 + ⋯ = ζ(0) = −1/2.

Emilio Elizalde presents a comment from others about the series:

In a short period of less than a year, two distinguished physicists, A. Slavnov and F. Yndurain, gave seminars in Barcelona, about different subjects. It was remarkable that, in both presentations, at some point the speaker addressed the audience with these words: 'As everybody knows, 1 + 1 + 1 + ⋯ = −1/2.' Implying maybe: If you do not know this, it is no use to continue listening.